Life-span exposure to sinusoidal-50 Hz magnetic field and acute low-dose γ radiation induce carcinogenic effects in Sprague-Dawley rats

Morando Soffritti, Eva Tibaldi, Michela Padovani, David G. Hoel, Livio Giuliani, Luciano Bua, Michelina Lauriola, Laura Falcioni, Marco Manservigi, Fabiana Manservisi, Simona Panzacchi & Fiorella Belpoggi

To cite this article: Morando Soffritti, Eva Tibaldi, Michela Padovani, David G. Hoel, Livio Giuliani, Luciano Bua, Michelina Lauriola, Laura Falcioni, Marco Manservigi, Fabiana Manservisi, Simona Panzacchi & Fiorella Belpoggi (2016): Life-span exposure to sinusoidal-50 Hz magnetic field and acute low-dose γ radiation induce carcinogenic effects in Sprague-Dawley rats, International Journal of Radiation Biology, DOI: 10.3109/09553002.2016.1144942

To link to this article: http://dx.doi.org/10.3109/09553002.2016.1144942

Published online: 19 Feb 2016.
Life-span exposure to sinusoidal-50 Hz magnetic field and acute low-dose γ radiation induce carcinogenic effects in Sprague-Dawley rats

Morando Soffrittia, Eva Tibaldia, Michela Padovania, David G. Hoelb, Livio Giulianic, Luciano Buaa, Michelina Lauriolaa, Laura Falcionib, Marco Manservigib, Fabiana Manservisib, Simona Panzacchiab and Fiorella Belpoggia

aCesare Maltoni Cancer Research Center, Ramazzini Institute, Castello di Bentivoglio, Bentivoglio, Bologna, Italy; bMedical University of South Carolina, Charleston, SC, USA; cNational Institute for Insurance Against Injuries at Work (INAIL), Firenze, Italy

ABSTRACT

\textbf{Background} In 2002 the International Agency for Research on Cancer classified extremely low frequency magnetic fields (ELFMF) as a possible carcinogen on the basis of epidemiological evidence. Experimental bioassays on rats and mice performed up to now on ELFMF alone or in association with known carcinogens have failed to provide conclusive confirmation.

\textbf{Objectives} To study the carcinogenic effects of combined exposure to sinusoidal-50 Hz (S-50Hz) magnetic fields and acute γ radiation in Sprague-Dawley rats.

\textbf{Methods} We studied groups of male and female Sprague-Dawley rats exposed from prenatal life until natural death to 20 or 1000 \textmu T S-50Hz MF and also to 0.1 Gy γ radiation delivered as a single acute exposure at 6 weeks of age.

\textbf{Results} The results of the study showed significant carcinogenic effects for the mammary gland in males and females and a significant increased incidence of malignant schwannomas of the heart as well as increased incidence of lymphomas/leukemias in males.

\textbf{Conclusions} These results call for a re-evaluation of the safety of non-ionizing radiation.

Introduction

From 1979 until now the results of numerous epidemiological research projects carried out on children living in houses near electricity power lines as well as on occupationally-exposed workers have suggested that there is a potential carcinogenic risk from electricity-generated magnetic fields. An initial association between exposure and leukemia in children was proposed in 1979 (Wertheimer & Leeper 1979). Subsequently Matanoski et al. (1982) reported a correlation between leukemia and magnetic fields levels above 0.3–0.4 \textmu T. There are approximately two-fold increased risk of childhood leukemia at magnetic fields levels above 0.3–0.4 \textmu T.

However, although during the past three decades several epidemiological studies have taken into consideration various exposure situations using different approaches, consistent evidence of an association was observed only with leukemia in children (Kheifets et al. 2010) and chance or confounding factors, including selection bias, might have contributed to uncertainty in correlating exposure to ELFMF and other tumor sites, particularly the ones related to occupational exposure (Grellier et al. 2014).

Indeed, despite the epidemiological evidence of an association, experimental studies in which ELFMF were administered alone have failed to provide conclusive confirmation. Experimentally, it has not been possible to identify a carcinogenic effect from magnetic fields and no accepted mechanism by which they might cause cancer has been described. Up to now, five long-term carcinogenicity bioassays on ELFMF administered alone, four conducted on rats (Margonato et al. 1995; Mandeville et al. 1997; Yasui et al. 1997; Boorman et al. 1999b) and one on mice (McCormick et al. 1999) have failed to show convincing evidence of any carcinogenic effect. The results of the NTP study showed equivocal evidence for the carcinogenic activity of 60-Hz magnetic fields in Fischer 344 rats on the basis of the increased incidence of thyroid gland C-cell neoplasms in males exposed to 2 or 200 \textmu T. There was no evidence of carcinogenicity in male rats exposed at 1000 \textmu T or again in female or male mice (Boorman et al. 1999b).
Several studies have been performed to evaluate the carcinogenic effects of combined exposure to ELF-MF and to well-known chemical carcinogenic agents. Up to now, the results of these studies have shown either weak or equivocal evidence of the ELF-MF capacity to enhance the carcinogenic effects of initiating agents with particular reference to mammary cancer (Beniashvili et al. 1991; Boorman et al. 1999a; Fedrowitz & Loscher 2008), lymphoma and leukemias (Boorman et al. 1999b; McCormick et al. 1999; Babbitt et al. 2000) and skin cancer (WHO-IARC 2002).

In conclusion, studies to date have typically lacked the size to identify rare events and have not lasted long enough to track diseases in later life. Critically, they have also not taken into account in utero exposure, apart from the study conducted by Mandeville et al. (1997) on small groups of Fisher 344 rats in which exposure began from day 20 of gestation.

This background motivated the Ramazzini Institute to embark on a project of life-span experimental studies on ELF-MF designed to evaluate the carcinogenic potentiality of ELF-MF alone and also in association with other known carcinogenic agents.

The experiments were planned as an integrated experimental project in which the exposure of the experimental animals to ELF-MF started from prenatal life and lasted until natural death. The aim of the studies was to assess the qualitative-quantitative carcinogenic effects of sinusoidal-50 Hz MF (S-50Hz MF), trying to simulate possible human exposure situations. Moreover, large experimental groups were used in order to increase the statistical power and thus improve the evaluation of possible low-magnitude oncogenic effects. For this purpose the project includes studies to assess: (1) the qualitative potential carcinogenic effects of S-50Hz MF alone with reference to intensity and continuity-discontinuity of electric current; (2) the carcinogenic effects of S-50Hz MF combined with acute exposure to ionizing radiation; (3) the carcinogenic effects of S-50Hz MF combined with exposure to carcinogenic chemical agents such as formaldehyde or aflatoxin B1; and (4) the possible pathogenic mechanisms at the basis of potential carcinogenic effects, as revealed by molecular profiling investigations.

The plan of the project, encompassed four experiments using 7133 rats in all. The four experiments started concurrently and the experimental animals were those born during the breeding of 2100 breeders. Table 1 presents the experimental design of two experiments in which animals were exposed only to S-50Hz MF or S-50Hz MF plus a single acute dose of 0.1 Gy of gamma radiation. Experiment No. 1 includes one control group that is common to experiment 2.

Materials and methods

To expose the animals to S-50Hz MF and γ radiation, specific radiation exposure conditions and facilities were designed and constructed.

S-50 Hz MF exposure conditions and facilities

In order to give all the experimental groups the same environmental conditions (i.e., a temperature of 22 ± 3°C, a relative humidity of 40–60% and 12 h/day homogeneous diffusion of light) the rats were located in a room of 60 × 15 × 4 m, in all more than 900 m².

The MF exposure system was constructed so as to satisfy a number of technical conditions, namely: (1) the magnetic field was linearly polarized; (2) the field lines were horizontal and parallel to the ground; (3) the field uniformity was better than ±10%; (4) the current supply had a maximum harmonic distortion of 3%; (5) the field rise time at power-up was at least 10 periods (for 50 Hz, 200 ms); (6) the current generator was noiseless; (7) the joule effect on windings did not alter the environmental temperature, a maximum variation of 2°C being tolerated near coils; (8) coil noise and vibration were absent; and (9) the natural field level was no more than 0.1 μT and all mutual interaction of the system was avoided, while in any case the control group stayed in the same room.

The exposure system was based on independent devices. Each simple exposure device served at least 500 rats, leaving enough space to isolate ill/moribund rats.

In order to satisfy stray field requirements, a good solution was obtained by using a toroidal-shaped device. Figure 1 shows the device’s magnetic structure. All the devices needed were identical and the different intensity of MF was obtained by properly tuning the power supplies which were of the current-controlled type. The toroidal shaped device guarantees the absence of interference between the structures. The fact is that, about 1 m away from the external torus boundary producing 1 milli Tesla, the field level is approximately 0.1 μTesla (Montanari 2003).

The toroid was designed with 24 coils made of three turns of insulated copper cable, mounted on a superstructure of aluminum composed of two insulated parts in order to avoid a closed loop subject to total field. The total copper cross section was 11 × 28 mm², and the total current used for 1 mT level was 359.6 A. The electric power was supplied by low

Carcinogenic effects on Sprague-Dawley rats exposed to ELF-MF from prenatal life until natural death and to 0.1 Gy γ radiation delivered in a single acute exposure at 6 weeks of age

This paper deals with the results of the experiment in which four groups of male and female Sprague-Dawley rats were exposed to 0, 20 or 1,000 μT of S-50Hz MF from prenatal life until natural death as well as to 0.1 Gy of γ radiation delivered in a single acute exposure at 6 weeks of age. This particular experiment encompassed 1658 male and female Sprague-Dawley rats.

The highest S-50Hz MF dose level was selected on the basis of data available in the literature. The lowest dose was chosen as representative of possible human exposure scenarios, particularly in the workplace (Portier & Wolfe 1998). The 0.1 Gy dose was chosen as being very close to radiation exposures during some medical investigations and because it was the lowest dose tested by us in an experiment evaluating the overall dose-response carcinogenic effects of γ radiation, (Soffritti et al. 2015).
The first experiment control group of over 500 males and 500 females was in common with experiment 3.

The treatment with ELFMF started from fetal life and lasted until spontaneous death.

The integrated project on S-50Hz MF.

<table>
<thead>
<tr>
<th>Experiments</th>
<th>No. of animals</th>
<th>Treatmenta (μTesla)</th>
<th>Other treatment</th>
<th>Duration</th>
<th>Type of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1b</td>
<td>5,029</td>
<td>0; 2; 20; 100; 1,000 C/Dc</td>
<td>–</td>
<td>Life-span</td>
<td>Full study</td>
</tr>
<tr>
<td>Experiment 3</td>
<td>657</td>
<td>0; 20; 1,000</td>
<td>γ radiation, 0.1 Gy single dose at 6 weeks of age</td>
<td>Life-span</td>
<td>Full study</td>
</tr>
</tbody>
</table>

aThe treatment with ELFMF started from fetal life and lasted until spontaneous death.
bThe first experiment control group of over 500 males and 500 females was in common with experiment 3.
cC/D: Continuity/Discontinuity of electric current.

Gamma radiation exposure conditions and facility

The animal facility for irradiation is located on the ground floor of the laboratory (in a different location from the S-50Hz MF facility), inside a properly shielded irradiation room (bunker), 5 × 4 m and 3 m high, communicating with the animal housing premises through a 5 × 4 m room, where the control board and exposure monitor facilities are set up. This room houses all the equipment needed to prepare animals for irradiation.

The radiation source was a therapy unit supplying Co 60 with an activity of about 56 TBq (1500 Ci). The apparatus made it possible to radiate up to 10 animals at the same time, with an absorbed dose rate of about 0.21 Gy/min. Dose measurement was made using a Nuclear Enterprise dosimeter type 2571 A, with a 0.6 cc graphite ionization chamber, calibrated in terms of dose absorbed to water with 4% uncertainty.

Treatment at the required acute dose of 0.1 Gy was divided into two equal irradiations, performed on the ventral and dorsal side of the animals respectively. In this way the rats were treated by two opposite irradiation fields, with an almost homogeneous dose distribution. More information on ionizing radiation apparatus is reported by Soffritti et al. (2015).

Diet

Ordinary feed was delivered in pellets ad libitum and provided by “Laboratorio Dottori Piccioni” (Milan, Italy) as has been the practice at the Cesare Maltoni Cancer Research Center of the Ramazzini Institute (CMCRC/RI) for more than 40 years. All the animals received tap water at libitum.

To avoid significant alterations, every 6 months biological and chemical examinations of the animal feed and tap water were performed. The results were recorded in ‘Feed data analysis’ and ‘Water data analysis’ reports and properly stored in the CMCRC/RI experimental data archives.

Experimental animals

The animals used for the experiment were Sprague-Dawley rats from the same colony used for more than 40 years at the CMCRC/RI. The basic expected tumorigram and its fluctuations are based upon data derived from more than 18,000 historical controls.

The generation of experimental animals was performed in the following way: (a) inbred breeders were randomized by body weight in four groups in such a way as to have no more than one brother and sister per group; (b) the size of breeder groups was dictated by the number of offspring required; (c) mating of the breeders that generated the offspring for the experiments was strictly outbred (made possible by the pedigree identification number of each animal); it was synchronized among groups and lasted 5 days; and (d) all the offspring of each litter from these breeders were assigned to the respective experimental groups.

All the male and female breeders were euthanized by CO2 over-exposure respectively 3 weeks after birth and 1 week after weaning offspring.

The experimental animals were weaned at 5 weeks of age, identified by ear punch (Jackson Laboratory method) and distributed by sex, litter by litter, until the planned number for each group was reached. After weaning, animals received ordinary feed and tap water ad libitum. They were housed 5 per cage, in polycarbonate cages (41 × 25 × 15) with covers made of non-magnetic material and a shallow layer of white wood shaving as bedding. All the animals were kept in a
temperature-controlled environment at 23 ± 2 °C and 50–60% of relative humidity, with 12 h/day light/dark alternation. The experiments were conducted according to the Italian law regulating the use and humane treatment of animals for scientific purposes (Decreto Legislativo 1992).

Treatment

Treatment with S-50Hz MF began during fetal life exposing the female breeders from the 12th day of pregnancy. The daily exposure to S-50Hz MF for both breeders and offspring was 19 h and for the offspring lasted until natural death. The animals of groups III and IV were also treated with an acute dose of 0.1 Gy of γ radiation at 6 weeks of age. The animals of group II were exposed only to γ radiation.

Conduct of the experiment

Housing

All animals were kept in highly standardized environmental and diet conditions, the same as used for more than 40 years in our laboratories.

Duration of the experiments

All the animals were monitored until their spontaneous death (life-span experiment).

Feed and water consumption

The daily feed and water consumptions were measured in a sample of 100 animals (50 males and 50 females) from each group starting from 6 weeks of age, every 2 weeks, for the first 8 weeks, and then at 4 week intervals, until 110 weeks of age.

Body weight

Body weight was recorded from the age of 6 weeks, every 2 weeks for the first 8 weeks, every 4 weeks until 110 weeks of age, and then every 8 weeks until the end of the experiment.

Health control

Animal health and behavior were checked 3 times daily throughout the entire experiment.

Clinical control

Checking for pathological lesions, including mammary tumors, was performed every 2 weeks for the first 8 weeks and every 4 weeks until the end of the experiment.

Necropsy and fixation

All dead rats were submitted to necropsy and the following organs and tissues were taken: Skin, subcutaneous tissue, mammary gland, brain, pituitary gland, Zymbal gland, salivary glands, Harderian glands, cranium, tongue, thyroid and parathyroid, pharynx, larynx, thymus, trachea, lung, heart, diaphragm, liver, spleen, pancreas, kidneys, adrenal glands, esophagus, stomach (fore and glandular), intestine (four levels), bladder, prostate, uterus, ovaries, testes, interscapular fat pad and subcutaneous, mediastinal and mesenteric lymph nodes. The organs and tissues collected were preserved in a 70% solution of Solvanol (a mixture of ethyl and isopropyl alcohol respectively, approx. 60% and 40%, obtained from Vital srl, Bologna, Italy), and 30% distilled water, apart from bone tissues which were preserved in 10% formalin and then decalcified.

Trimming

All lesions were trimmed so as to include a portion of adjacent normal tissue. As far as normal tissues and organs are concerned, trimming was performed according to standard laboratory procedures.

Histopathology

The trimmed specimens were processed and embedded in paraffin blocks according to standard operating procedures (SOP) of the laboratory. Then 3–5 μm sections were cut and routinely stained with Hematoxylin-Eosin. A histopathology evaluation was performed by the same group of pathologists. The supervisor reviewed all lesions of oncological interest as well as any open to dubious interpretation. In the pathological diagnosis, all the pathologists used the same evaluation criteria and the same classification described in the specific SOP and long adopted at the CMCRC/RI. The diagnoses are reported in the experimental registries.

Statistical analysis

Statistical evaluation of the various malignant tumors was based on the Cox proportional hazard regression model (Cox 1972) which was adjusted for possible differential survival. The p-values are reported in the tables. For those endpoints for which some dose groups had no cases, a simple Mantel-Haenszel model was used since there was no difference in survival between the exposed groups.

Results

The experiment proceeded smoothly without any noticeable unexpected alteration of the clinical status of the animals in the various groups. No differences were observed in body weight among control vs. treated male and female groups (Figure 2). The survival among males and females of the various groups is presented in Figure 3. The data showed that no change in survival for either sex was observed among the groups. Significant oncological results related to site-specific tumors are reported in Tables 2–6.

Mammary gland tumors

The mammary lumps of males and females were carefully monitored during the experiment. From the age of
72 weeks until death a sharp increased incidence of mammary lumps was clinically observed in females exposed to S-50Hz MF plus 0.1 Gy compared to the other groups.

Comparison with untreated control group
The incidences of males and females bearing benign and malignant tumors of mammary glands are reported in Table 2. No difference in the incidence of mammary...
fibroadenomas or adenocarcinomas was observed between male and female untreated rats compared to those treated with 0.1 Gy.

Comparing the untreated controls with groups treated with 20 or 1000 μT plus 0.1 Gy, the data show: (1) a significant dose-related increased incidence of mammary carcinomas in males (p < 0.01) and females (p < 0.01); (2) a significant increased incidence in males exposed to 20 μT plus 0.1 Gy (p < 0.01) and in females exposed to 1000 μT plus 0.1 Gy (p < 0.01). In females a sharp difference in cumulative hazard may be observed among the group treated with 1000 μT plus 0.1 Gy compared to untreated controls and the group exposed only to 1000 μT (Figure 4). Moreover, in females the total number per 100 animals of breast tumors (benign and malignant aggregated) was 60.1 in untreated controls and 61.0 in females exposed to 0.1 Gy compared to 70.1 and 85.7 among the groups exposed to 20 μT or 1000 μT plus 0.1 Gy, respectively.

The incidences of males and females bearing atypical precursors (namely atypical hyperplasia in the glands or in fibroadenomas) or adenocarcinomas of the mammary gland are reported in Table 3. Compared to the untreated control group, a significant dose-related increased incidence of animals bearing atypical precursors occurred in males (p < 0.05) and females (p < 0.01), in particular in females exposed to both levels of S-50Hz MF plus γ radiation (p < 0.01) and in
Specifically, progression from benign to malignant neoplasms cinogenicity of a given agent (McConnell et al. 1986). justified to gain more insight into the evidence of the car-
mammary lesions with animals bearing adenocarcinomas is respectively).

In our historical controls mammary cancer in male rats is a very rare tumor. Indeed, out of 2415 males the overall

has been suggested for mammary gland neoplasms in rats (van Zwieten et al. 1984; Russo 2015) to show the potential carcinogenic risk. Moreover, cytologically, atypical mammary hyperplasias are characterized by cells that have some of the neoplastic characteristics of low-grade ductal carcinoma *in situ* (Fabrician et al. 2000; Singletary 2003; WHO-OMS-IARC 2003). As reported by the Cancer Committee of the College of American Pathologists (Fitzgibbons et al. 1998), and documented also by other less recent studies (Dupont et al. 1993), the relative risk of developing a mammary cancer among patients with atypical ductal hyperplasia is 4–5 times higher.

Histologically the adenocarcinomas in both male and female rats showed papillary and solid lobular structures with an increased nuclear/cytoplasm ratio and prominent nucleoli of the epithelial cells. In some cases, metastasis occurred in the lung.

In our historical controls mammary cancer in male rats is a very rare tumor. Indeed, out of 2415 males the overall

Table 4. Incidence of animals bearing mammary adenocarcinomas, or atypical precursors aggregated with mammary adenocarcinomas in male (M) and female (F) Sprague-Dawley rats exposed to S-50Hz MF and γ radiation\(^{a,b}\) compared to 0.1 Gy treated group.

<table>
<thead>
<tr>
<th>Group No. (μT/Gy)</th>
<th>Sex</th>
<th>No.</th>
<th>%</th>
<th>Animals bearing mammary adenocarcinomas</th>
<th>Animals bearing mammary adenocarcinomas or atypical precursors</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (0/0.1)</td>
<td>M</td>
<td>118</td>
<td>–</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>105</td>
<td>8</td>
<td>7.6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>M + F</td>
<td>223</td>
<td>8</td>
<td>3.6</td>
<td>13</td>
</tr>
<tr>
<td>II (20/0.1)</td>
<td>M</td>
<td>105</td>
<td>3</td>
<td>2.9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>107</td>
<td>8</td>
<td>7.5</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>M + F</td>
<td>212</td>
<td>11</td>
<td>5.2</td>
<td>26</td>
</tr>
<tr>
<td>III (1000/0.1)</td>
<td>M</td>
<td>110</td>
<td>1</td>
<td>0.9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>112</td>
<td>18</td>
<td>16.1*</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>M + F</td>
<td>222</td>
<td>19</td>
<td>8.6</td>
<td>34</td>
</tr>
</tbody>
</table>

\(^a\)The treatment with S-50Hz MF for 19 h/day, in continuous way (C), started on the 12th day of pregnancy and lasted until natural death.

\(^b\)γ radiation delivered as a single acute exposure at 6 weeks of age.

\(^c\)Mammary gland atypical precursors include: animals bearing atypical hyperplasia in single mammary gland or in fibroadenoma; they are counted only once according to the most severe lesion.

\(^d\)Statistically significant compare to 0.1 Gy group (p ≤ 0.05) using Cox Proportional Hazard model.

\(^e\)Statistically significant compare to 0.1 Gy group (p ≤ 0.05) or **\(^p \leq 0.01\)** using the Mantel-Haenszel Model for the analysis (used for incidental lesions).

Near the 0.1 Gy group (positive control) incidence is the \(p\)-value \((p ≤ 0.01)\) using the Mantel-Haenszel Model for incidental lesions for trend analysis.

Table 5. Incidence of heart malignant schwannomas and hemolymphoreticular neoplasias in male (M) and female (F) Sprague-Dawley rats exposed to S-50Hz MF and/or γ radiation\(^{a,b}\) compared to untreated controls.

<table>
<thead>
<tr>
<th>Group No. (μT/Gy)</th>
<th>Sex</th>
<th>No.</th>
<th>%</th>
<th>Animals bearing heart malignant schwannomas</th>
<th>Animals bearing hemolymphoreticular neoplasias</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (0/0)</td>
<td>M</td>
<td>500</td>
<td>1</td>
<td>0.2%</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>501</td>
<td>0</td>
<td>–</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>M + F</td>
<td>1001</td>
<td>1</td>
<td>0.1</td>
<td>151</td>
</tr>
<tr>
<td>II (0/0.1)</td>
<td>M</td>
<td>118</td>
<td>0</td>
<td>–</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>105</td>
<td>1</td>
<td>1.0</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>M + F</td>
<td>223</td>
<td>1</td>
<td>0.4</td>
<td>31</td>
</tr>
<tr>
<td>III (20/0.1)</td>
<td>M</td>
<td>105</td>
<td>2</td>
<td>1.9*</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>107</td>
<td>1</td>
<td>0.9</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>M + F</td>
<td>212</td>
<td>3</td>
<td>1.4</td>
<td>40</td>
</tr>
<tr>
<td>IV (1000/0.1)</td>
<td>M</td>
<td>110</td>
<td>3</td>
<td>2.7**</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>112</td>
<td>0</td>
<td>–</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>M + F</td>
<td>222</td>
<td>3</td>
<td>1.3</td>
<td>44</td>
</tr>
</tbody>
</table>

\(^a\)The treatment with S-50Hz MF for 19 h/day, in continuous way (C), started on the 12th day of pregnancy and lasted until natural death.

\(^b\)γ radiation delivered as a single acute exposure at 6 weeks of age.

\(^c\)Statistically significant (p ≤ 0.05) or **\(^p \leq 0.01\)** using Cox Proportional Hazard model.

##Near the control incidence is the \(p\)-value \((p ≤ 0.01)\) (excluding the 0.1 Gy group) using Cox Regression Model for the analysis of trend.

Table 6. Incidence of animals bearing hemolymphoreticular neoplasias in male (M) and female (F) Sprague-Dawley rats exposed to S-50Hz MF and/or γ radiation\(^{a,b}\) compared to 0.1 Gy treated group.

<table>
<thead>
<tr>
<th>Group No. (μT/Gy)</th>
<th>Sex</th>
<th>No.</th>
<th>%</th>
<th>Animals bearing hemolymphoreticular neoplasias</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (0/0.1)</td>
<td>M</td>
<td>118</td>
<td>18</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>105</td>
<td>13</td>
<td>12.4</td>
</tr>
<tr>
<td></td>
<td>M + F</td>
<td>223</td>
<td>23</td>
<td>13.9</td>
</tr>
<tr>
<td>II (20/0.1)</td>
<td>M</td>
<td>105</td>
<td>19</td>
<td>18.1</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>107</td>
<td>21</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td>M + F</td>
<td>212</td>
<td>21</td>
<td>19.6</td>
</tr>
<tr>
<td>III (1000/0.1)</td>
<td>M</td>
<td>110</td>
<td>28</td>
<td>25.5*</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>112</td>
<td>16</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>M + F</td>
<td>222</td>
<td>44</td>
<td>19.8</td>
</tr>
</tbody>
</table>

\(^a\)The treatment with S-50Hz MF for 19 h/day, in continuous way (C), started on the 12th day of pregnancy and lasted until natural death.

\(^b\)γ radiation delivered as a single acute exposure at 6 weeks of age.

\(^c\)Statistically significant compare to 0.1 Gy group (p ≤ 0.05) using Cox Proportional Hazard model.

males exposed to 1000 μT plus 0.1 Gy (p ≤ 0.05). Moreover the data show that when the males and females bearing atypical precursors are respectively aggregated to males and females bearing adenocarcinomas, a significant dose-related increased incidence occurred in males (p ≤ 0.01) and females (p ≤ 0.01), in particular in males and females exposed to 20 μT plus γ radiation (p ≤ 0.01, respectively) and in males and females exposed to 1000 μT plus 0.1 Gy (p ≤ 0.05 and p ≤ 0.01, respectively).

Aggregation of animals bearing benign tumors or atypical mammary lesions with animals bearing adenocarcinomas is justified to gain more insight into the evidence of the carcinogenicity of a given agent (McConnell et al. 1986). Specifically, progression from benign to malignant neoplasms
incidence is 0.5% (0–1.3%). In females, out of 2424 rats the overall incidence of mammary cancers is 8.9% with a range of 2.9–14.2%.

Comparison with the 0.1 Gy treated control group

Table 4 reports the incidences of mammary tumors in rats exposed to 20 or 1000 μT plus 0.1 Gy compared to rats exposed only to 0.1 Gy. The data show a still significant increased incidence of mammary adenocarcinoma in females exposed to 1000 μT plus 0.1 Gy (p ≤ 0.05). The evidence of an increased cumulative hazard for adenocarcinomas in females induced by exposure to 1000 μT plus 0.1 Gy compared to the groups exposed to 20 μT plus 0.1 Gy or 0.1 Gy is shown in Figure 5 in which a sharp difference may be observed starting after 120 weeks of age. When the animals bearing adenocarcinomas are aggregated to animals bearing atypical precursors (including atypical cellular hyperplasia in a single mammary gland or areas of cellular atypia in fibroadenomas), a significant dose-related increased incidence occurred in males (p ≤ 0.01) and females (p ≤ 0.01), as well as in males exposed to 20 μT or 1000 μT plus 0.1 Gy (p ≤ 0.01 and p ≤ 0.05, respectively) and in females exposed to 20 μT or 1000 μT plus 0.1 Gy (p ≤ 0.01 in both cases).
Malignant schwannomas of the heart and hemolymphoreticular neoplasias (HLRN)

The incidences of animals bearing malignant schwannomas of the heart and HLRN are reported in Table 5.

Compared to untreated controls, a significant dose-related increased incidence ($p \leq 0.01$) of heart malignant schwannomas occurred in males treated with S-50Hz MF and 0.1 Gy. Concerning males exposed to 20 μT plus 0.1 Gy ($p \leq 0.05$) or to 1000 μT plus 0.1 Gy, a significant increased incidence of malignant schwannomas was observed in both groups ($p \leq 0.01$, respectively) compared to untreated controls. When compared to the group exposed to 0.1 Gy alone, the differences in the incidences were no longer significant.

Heart malignant schwannoma is not a frequent tumor among male Sprague-Dawley rats from our colony. Out of 2415 males, the overall incidence of heart malignant schwannomas is 0.7% (range 0–2%). Microscopically, malignant schwannomas involved the left ventricle with extension inside the cavity, infiltration of the sub-endocardium and involvement of the right ventricle and the aortic valve. Neoplastic cells arranged in palisading structures, pleomorphic cells, giant nuclei, and mitotic figures are observed in neoplastic tissues. Immunohistochemical characterization was positive for S-100 protein stain.

The incidence of HLRN in males shows a significant increase at the exposure to 1000 μT plus 0.1 Gy as compared to negative controls ($p \leq 0.05$). The increased incidence is still significant ($p \leq 0.05$) when the males exposed to 1000 μT plus 0.1 Gy are compared to males exposed to 0.1 Gy (Table 6). The evidence of the increased cumulative hazard of hematopoietic tumors induced by 1000 μT plus 0.1 Gy in males compared to exposure to 0.1 Gy or 20 μT plus 0.1 Gy is shown in Figure 6.

Lymphoma and leukemia are neoplasias arising from the hemolymphoreticular tissues and aggregation of them is allowed because solid and circulating phases are common in many hematopoietic neoplasms and a distinction would be artificial (Harris et al. 2001). In our historical untreated male controls the overall incidence of hematopoietic neoplasias is 20.5% (range 8.0–30.9) out of 2415 male rats.

Compared to the higher range of historical controls, the incidence of HLRN in males exposed at the highest dose level of S-50Hz MF and γ radiation is slightly lower, but significantly higher than the concurrent 0.1 Gy and untreated control group.

Discussion

The aim of this study was to evaluate the carcinogen-promoting effects of S-50Hz MF life-span exposure using a γ radiation initiation/promotion protocol in Sprague-Dawley rats.

The results of the study show, for the first time, that exposure of Sprague-Dawley rats to S-50Hz MF from prenatal life until natural death plus acute low-dose γ radiation delivered at 6 weeks of age, compared to untreated controls, significantly enhances the incidence of several tumors in males and females, namely: (a) a significant dose-related increased incidence of mammary adenocarcinomas in males and females in particular in males exposed to 20 μT plus 0.1 Gy and in females exposed to 1000 μT plus 0.1 Gy; (b) in males a significant dose-related increased incidence of heart malignant schwannomas with a significant increase among males exposed to 20 μT plus 0.1 Gy ($p \leq 0.05$) and to 1000 μT plus 0.1 Gy; and (c) a significant increased incidence of hematopoietic neoplasias in males treated at 1000 μT plus 0.1 Gy. Concerning our S-50Hz MF alone study arm, no effects were shown on these cancer endpoints.

When rats exposed to MF and 0.1 Gy are compared with the group exposed to 0.1 Gy alone, a significant increased incidence was observed in mammary adenocarcinomas among females exposed to 1000 μT plus 0.1 Gy, as well as in
hematopoietic neoplasms among males exposed to 1000 μT plus 0.1 Gy.

The long-term bioassays on rodents hitherto published to test the carcinogenic potential of 50/60 Hz MF alone have failed to show clear evidence of carcinogenic effects. However, the large diffusion of ELF MF in the general and occupational environment has motivated widespread interest in testing the interaction of ELF MF with certain known chemical and physical carcinogens.

Up to now, several sub-chronic studies have been conducted to test the carcinogen-promoting activity of ELF MF using initiation-promotion animal models and trying to induce various types of tumor, mainly mammary cancers in female rats or lymphoma/leukemia in mice and rats.

Mammary cancers

Concerning studies on initiation-promotion of mammary tumors in female rats, the first results were reported by Beniaishvili et al. (1991). They showed that treatment with N-Methyl-N-Nitrosurea (MNU) as the initiator followed by exposure to 50 Hz MF for 2 years enhanced the induction of mammary cancers. These results were confirmed later in a second experiment conducted by the same group (Anisimov et al. 1996). However, as reported by Boorman et al. (2000), their inadequate reporting of experimental methods and lack of engineering details rule out any assessment of the significance of the results. These are the only studies in which MNU has been used.

More studies have been conducted on magnetic fields using a 7,12-dimethyl-benz[a]anthracene (DMBA) rat mammary tumor model. In a series of German studies it was reported that DMBA-initiated female Sprague-Dawley rats exposed to ELF MF in experiments lasting 13 weeks had an earlier onset, larger size and increased incidence of mammary tumors (Mevissen et al. 1993; 1996, 1998; Loscher & Mevissen 1994). In another study, in which the exposure to ELF MF lasted 27 weeks after treatment with DMBA, the results were similar (Thun-Battersby et al. 1999). In a study conducted by Ekstrom et al. (1998) in which Sprague-Dawley rats were treated with an initiating dose of DMBA followed by exposure to ELF MF for 25 weeks, no difference was observed in mammary tumor incidence compared to animals exposed only to DMBA.

Other studies, conducted in the framework of the U.S. National Toxicology Program (NTP) by Boorman et al. (1999a) and Anderson et al. (1999), both using the DMBA model, failed to find a promoting effect at either 50 or 60 Hz MF. The differences in the results observed between the NTP and the German studies supported the hypothesis that genetic differences between substrains of Sprague-Dawley rats used in the different laboratories may be involved (Anderson et al. 2000).

In a careful review of the published literature on magnetic fields and mammary cancer in rodents (12 studies), Boorman et al. (2000) wrote that 'when considered in total, the results of these studies demonstrated either negative or inconsistent positive results across five endpoints (tumor incidence, number of tumor-bearing rats, time to tumor, total tumors and tumor size)' and he concluded with a citation of the U.S. National Institute of Environmental Health Science that ‘the collection of studies provides strong evidence of no effect of magnetic fields on the promotional development of mammary cancer’ (NIEHS 1999).

However further studies conducted by the German laboratory in early 2000 showed that 50 Hz MF produced an enhanced proliferation of mammary epithelium in female Sprague-Dawley rats (Fedrowitz et al. 2002).

In a subsequent experiment the same authors showed that the genetic background plays a pivotal role in effects of magnetic exposure (Fedrowitz et al. 2004). Based on this assumption, Fedrowitz and Loscher (2005) tested the effects of MF in inbred Fisher 344 rats. They showed that exposure of mammary glands to MF, in females, increased the number of terminal end buds in breast tissues, which are the site of origin of mammary carcinomas as reported by Russo and Russo (1996). Furthermore a 26-week study conducted on Fisher 344 rats exposed to DMBA and MF showed a significant increased incidence of mammary adenocarcinomas in treated females compared to sham controls (Fedrowitz & Loscher 2008).

Later, Fedrowitz and Loscher (2012) published the results of a mammary gland gene expression study performed on MF-sensitive female Fisher 344 and MF-insensitive Lewis rats aimed to elucidate candidate genes involved in differences of MF response in mammary glands. After 2 weeks of sham- or 50 Hz MF-exposure, the Fisher 344 breast tissue showed alterations in gene expression which were not observed in Lewis rats and could be considered correlated to the MF-susceptibility of F344.

In summary, our results with S-50Hz MF prenatal life-span exposure combined with acute exposure to 0.1 Gy γ radiation support the hypothesis that 50 Hz MF enhances the risk of mammary cancer in females, the evidence being the time of appearance of mammary adenocarcinomas (Figure 7), significant increased incidence of cancers, and increased numbers of mammary tumors per 100 rats. Moreover the fact that the cumulative hazard of mammary cancer observed in females exposed to 1000 μT alone for the life-span proved fairly similar to the concurrent negative controls, as shown in Figure 4, reinforces the conclusion that the significant increased incidence of mammary cancers is not accidental but related to exposure to 1000 μT S-50Hz MF plus 0.1 Gy γ radiation. Significant carcinogenic effects in the form of breast cancer were also shown for the first time in male rats. In order to identify new molecular targets of S-50Hz MF exposure, a gene expression analysis in the mammary gland tissue of the male and female Sprague-Dawley rats of this study will be performed inside the molecular biology laboratory at the CMCR/RI.

Malignant schwannomas of the heart

Concerning malignant schwannomas of the heart, this is a rare tumor in rodents, as it is in humans. Indeed, primary malignant schwannoma of the heart in humans comprises only 0.75% of all primary cardiac tumors and thus is very rare.
In experiment No. 1 of our project in which male rats were exposed only to 1000 μT, out of 253 males exposed, two animals bearing malignant schwannomas of the heart were observed (0.8%). Overall, in the same experiment out of 2004 males exposed to five dose levels of S-50Hz MF from prenatal life until death, we observed eight animals (0.04%) bearing malignant schwannomas (personal communication of data not yet published). These data may support a correlation with the exposure to S-50Hz MF plus 0.1 Gy radiation.

Hemolymphoreticular neoplasias (HLRN)

As reported by Boorman et al. (2000b), several animal studies in rats and mice have been conducted to evaluate the potential leukemogenic effects of 50/60 Hz MF. Of course, due to the limited statistical power of long-term bioassays to detect significant increased incidence of leukemia in early age, it is very difficult to reproduce in these studies the leukemogenic effects detected in children exposed to ELF MF. However the four already reported long-term bioassays published up to now failed to show any leukemogenic effects of ELF MF in experimental test conditions.

In a large long-term bioassay in which, after exposure to ionizing radiation, groups of female mice were exposed to 60 Hz MF for 120 weeks, no effects on HLRN were observed (Babbitt et al. 1999). In another initiation/promotion study, groups of mice were exposed to DMBA by way of initiation and afterwards exposed to 50Hz–1000 μT for 16 weeks. The overall incidence of lymphoma was similar among the groups (Shen et al. 1997). Other studies conducted using various transgenic models or transplanted tumor models did not show any leukemogenic effect. All in all, the animal studies reported do not provide evidence that 50 or 60 Hz MF induces HLRN.

Conclusions

The results of this study have demonstrated for the first time that exposure to S-50Hz MF from prenatal life until natural death enhances the carcinogenic effects of γ radiations in male and female Sprague-Dawley rats.

The results of our study cannot be compared to those of the studies conducted in the past because of our different experimental design, large number of animals per group, starting exposure from prenatal life and duration of observation until natural death, our complete histopathological evaluation of all organs and tissues, as well as the possibility we had of comparing the incidence of various tumors in rats treated with 0.1 Gy and among negative controls as well as with concurrent males and females exposed to 1000 μT MF alone.

The type and level of 0.1 Gy exposure planned for this study cannot be considered unusual in the human working place or in general life. For instance, during computed tomography (CT) investigations, the organ being studied typically receives a radiation dose from 15 mGy (in adults) to 30 mGy (in children) with an average of 2–3 scans per study (which corresponds at least to 120 mGy, which is >0.1 Gy) (Brenner & Hall 2007). Radiation exposure from CT scans and increased cancer risk in adults (Sodickson et al. 2009) and in children (Pearce et al. 2012) has been reported. Moreover S-50Hz MF...
may enhance progression of a number of lesions from benign
to malignant. Indeed, our results on mammary cancer as well
as on leukemia and malignant schwannomas of the heart
should call attention to situations in which exposure to MF
may be associated with exposure to low doses of well-known
carcinogenic agents such as ionizing radiation or other chem-
ic carcinogens.

In conclusion, in our opinion these results call for a re-
evaluation of the safety of non-ionizing radiation particularly
at this time when the pressure to move from conventional
fuels-based mobility to electric mobility deserves high priority
in the EU and US and other industrialized countries.

Acknowledgements

We thank Professor Ivan Montanari who realized the apparatus to expose
animals to the S-50Hz magnetic field and the personnel of the Laboratory
of Histopathology of the CMCR/RI for their committed efforts in the
preparation of the slides.

Disclosure statement

The authors report no conflict of interest. The authors alone are respon-
sible for the content and writing of the paper. They also declare that their
funding sources had no direct role in the study design, data collection,
analysis and interpretation of the data, in the writing of the manuscript,
or in the decision to publish the work.

Funding information

The research was supported by the Ramazzini Institute; Regional Agency
for Prevention and the Environment Emilia-Romagna Region; UK Children
With Cancer; Bologna Cassa di Risparmio Foundation; National Institute
for Insurance Against Injuries at Work (INAIL, ex ISPESL); Foundation Del
Monte of Bologna and Ravenna; and Municipality of Bologna.

References

Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, Linet M,
Anderson LE, Boorman GA, Morris JE, Sassler LB, Mann PC, Grumbein SL,
magnetic field exposures on DMBA-initiated mammary gland carcino-
Anderson LE, Morris JE, Sassler LB, Loscher W. 2000. Effects of 50- or
60-hertz, 100 microT magnetic field exposure in the DMBA mamma-
cancer model in Sprague-Dawley rats: possible explanations for differ-
Anisimov VN, Zhukova OV, Beniashvili DS, Bilanishvili VG, Menabde MZ,
Gupta D. 1996. Effect of the light regime and electromagnetic fields on
41:807–814.
Babbitt JT, Khrazi AI, Taylor JM, Bonds CB, Mirell SG, Frumkin E, Zhuang D,
Hahn TJ. 2000. Hematopoietic neoplasia in C57BL/6 mice exposed to
split-dose ionizing radiation and circularly polarized 60 Hz magnetic
Babbitt JT, Khrazi AI, Taylor JM, Rafferty CN, Kovatch CB, Bonds CB, Mirell
in mice exposed to 60Hz magnetic fields: results of the Chronic
Beniashvili DS, Bilanishvili VG, Menabde MZ. 1991. Low-frequency elec-
 tromagnetic radiation enhances the induction of rat mammary tumors by
Boorman GA, Anderson LE, Morris JE, Sassler LB, Mann PC, Grumbein SL,
magnetic field exposures in a DMBA initiation-promotion mammary
Boorman GA, McCormick DL, Findlay JC, Hailey JR, Gauger JR, Johnson TR,
Kovatch RM, Sills RC, Haseman JK. 1999b. Chronic toxicity/oncogenicity
evaluation of 60 Hz (power frequency) magnetic fields in F344/N rats.
Toxicol Pathol. 27:267–278.
Magnetic fields and mammary cancer in rodents: a critical review and
Boorman GA, Rafferty CN, Ward JM, Sills RC. 2000b. Leukemia and lymph-
omia incidence in rodents exposed to low-frequency magnetic fields.
Cox DR. 1972. Regression models and life tables (with Discussion). J Royal
direttiva. 86/609/CEE in materia di protezione degli animali utilizzati a
fini sperimentali o ad altri fini scientifici [in Italian]. Gazzetta Ufficiale,
Supplemento ordinario, 5–25.
Demers PA, Thomas DB, Rosenblatt KA, Jimenez LM, McTiamer A,
Stalsberg H, Stenhagen A, Thompson WD, Curneg MG, Satariano W,
et al. 1991. Occupational exposure to electromagnetic fields and breast
Draper G, Vincent T, Kroll ME, Swanson J. 2002. Childhood cancer in rela-
tion to distance from high voltage power lines in England and Wales:
A case-control study. BMJ. 330:1290.
Dupont WD, Parrl FF, Hartmann WH, Brinton LA, Winfield AC, Worrell JA,
Schuyler PA, Plummer WD. 1993. Breast cancer risk associated with
proliferative breast disease and atypical hyperplasia. Cancer.
71:1258–1265.
Ekstrom T, Mild KH, Holmberg B. 1998. Mammary tumours in Sprague-
Dawley rats after initiation with DMBA followed by exposure to 50Hz
Fabian CJ, Kimler BF, Zalles CM, Klemm JR, Kamel S, Zeiger S, Mayo MS.
2000. Short-term breast cancer prediction by random periareolar fine-
92:1217–1227.
Fedorowicz M, Kamino K, Roscher W. 2004. Significant differences in the
effects of magnetic field exposure on 7,12-dimethylbenz(a)anthracene-
induced mammary carcinogenesis in two substrains of Sprague-
Fedorowicz M, Roscher W. 2005. Power frequency magnetic fields increase
cell proliferation in the mammary gland of female Fischer 344 rats but
not various other rat strains or substrains. Oncology. 69:486–498.
Fedorowicz M, Roscher W. 2008. Exposure of Fischer 344 rats to a weak
power frequency magnetic field facilitates mammary tumorigenesis in
Fedorowicz M, Roscher W. 2012. Gene expression in the mammary gland
of female Fischer 344 Lewis rats after magnetic field exposure
(50Hz, 100 muT) for 2 weeks. Int J Radiat Biol. 88:425–429.
increases cell proliferation but does not affect melatonin levels in the
62:1356–1363.
Fitzgibbons PL, Henson DE, Hutter RV. 1998. Benign breast changes and
the risk for subsequent breast cancer: an update of the 1985 consen-
sus statement. Cancer Committee of the College of American
Grellier J, Ravazzani P, Cardis E. 2014. Potential health impacts of residen-
tial exposures to extremely low frequency magnetic fields in Europe.
Environ Int. 62:55–63.
Harris NL, Jaffe ES, Vardiman JW, Stein H, Diebold J, Muller-Hermelink HK.
2001. WHO classification of tumors of hematopoietic and lymphoid
Tumors of hematopoietic and lymphoid tissues. Lyon: World Health